
Esport Team Twente Lounge
Reservation System

Design Project: Design Report

Design Project Group 18
Ivan Trendafilov (s2309858)
Viktor Tonchev (s2332000)
Boris Belchev (s2388952)
Pavel Hristov (s2315424)
Irvine Verio (s2273454)

1

Abstract
This report explains the design and process behind “Esport Team Twente Lounge” which is an
online reservation system that has been developed for the Esports Lounge Twente (EL). It is a
collaborative effort between Esports Team Twente (University student-team), Blueshell
(University of Twente Esports organisation) and the Student Union. The main goal of this project
is to enable students to use the newly built lounge services. This system is essential since the
lounge has just been finished and does not have any means for the students to be able to use
the lounge services. In order to realise this, a web application system has been made such that
students could use the lounge services by reserving the facilities and/or devices in the lounge.
Besides, the administrators are also able to manage the students’ reservations in the system.

2

Introduction 6

Domain Analysis 8
Introduction 8
Glossary 8
General knowledge about the domain 8
Users, operators and concerned parties 8
The environment 9
Tasks and procedures performed 9
Similarities between other UT software 9

Stakeholders 11
Onion model stakeholder 11

Direct stakeholders 12
Students 12
Developers 12
EL staff 12
Client 12

Indirect stakeholders 12
Student union 12
Esports Team Twente 12
Blueshell 12
University of Twente 13

Requirement Specification 14
Agile Project Management Approaches for Requirement Specification 14
Requirement Formulation 14
Requirement Prioritisation 15
Stakeholder Requirements and System Requirements 15

System Proposal 16
Meetings with client 16
Requirements proposal 16
Mockups proposal 16
Preliminary Design 17
System increment 22
Presentation proposal 23

Requirement Analysis 24
Stakeholder requirements 24
System requirements 26

Functional requirements 26

3

Non-functional requirements 28
Risk analysis 29

R1: Connecting the new system with the external login system 30
R2: Preserving correct dates and times 31
R3: Time schedule exceeded 32
R4: Insufficient/missing quality of the new system 32

System Design 34
System description 34
Design choices 36
Functionalities 38

System Development 40
Programming languages and frameworks 40
System description 41
Login system 42

Testing 42
Test Plan 43

Approach 43
Unit testing 43
Integration testing 43
Usability testing 43

Features to be tested 44
Item pass/fail criteria 45
Risks and contingencies 45
Schedule 45
Approvals 45

Test results 46
Unit testing 46
Integration testing 46
Usability testing 46

Use cases user side 47
Use cases administrator side 47
Feedback user side 47
Feedback administrator side 47

Future Work 49
Support of the system 49
Integration with DMS system 49

Evaluation 50
Planning 50

Sprint 1 - Requirement analysis / Design (9th - 18th February 2022) 50

4

Sprint 2 - Design / development (28th February - 11th March 2022) 50
Sprint 3 - Development (14th - 25th March 2022) 51
Sprint 4 - Development (28th March - 8th April 2022) 51
Sprint 5 - Closure (11th - 20th April 2022) 51

Responsibilities 51
Team evaluation 52
Deliverables 52

Functional requirements 52
Non-functional requirements 53

Conclusion 54

References 56

Appendix 57
Mockups 58
Usability testing records 62

Interaction scenario 62
User side 62
Admin side 62

Setup 63
Procedure 63
Questions 63

Final Product 64
Client interface 64
Administrator Interface 66

5

Introduction
History of video games can be traced back to 1947 when the first known electronic video game
was introduced - Cathode-ray tube amusement device (Cohen, Cathode-Ray Tube Amusement
Device: The World's first video game? 2019).Then came the 1970s and 1980s, when arcade
video games became extremely popular in the United States and most other parts of the world.
With the advancement of computer technology and graphics, video games evolved into more
than just a form of entertainment for friends and family. All of this culminated in the first gaming
competition (Good, Today is the 40th anniversary of the world's first known video gaming
tournament 2013), held in 1972 by Stanford University, with the winner receiving a yearly
subscription to the Rolling Stones. For many fans, it became a way to make money by
streaming their gameplay or simply compete for awards with other fans. The first esports event,
the Red Annihilation tournament (Baker, Meet Dennis 'thresh' fong, the original pro gamer
2018), held in 1997, marks the pinnacle of the video game industry's development.

Electronic sports, which abbreviated as esports or e-sports. It denotes a new and modern
subdomain of the sporting world. It takes the form of competitive gaming with professional
aspects such as wages, substantial awards ranging from a few thousands to a couple of
millions, training and development facilities, and, as with any sport, coaches and players who
make this their full-time job. On July 25, 2001, Russia became the first country to recognize it as
a sport ("cybersport"), followed by China in 2003 and the rest of the world in the following years.
The most notable esports event was the Free Fire World Series 2021 Singapore, which was
watched by 5.41 million people.

Esports in Twente has been booming since the Esports Team Twente was founded two years
ago, on the 3rd of March 2020. ​​Esports Team Twente was founded as the newest official
University of Twente student team and were off to a great start with exposure on social media,
the radio and an article in Tubantia. However, due to the Pandemic that happened shortly
afterwards, the University of Twente was closed to follow the government regulations. Although
this slowed the momentum down considerably, Esports Team Twente has truly established itself
as an upcoming esports organisation in the middle of the Dutch gaming and esports network
due to the quick adaptation of the situation (Esports Team Twente, Year One in Review 2021).

Esports Team Twente is the 7th official student team of the University of Twente. The
organisation has taken up the challenge to bring gaming to the next level by combining research
and engineering of multiple disciplines with the aim of improving esports performance. Esports
Team Twente participates in various tournaments and competitions, performs unprecedented
research on the many factors that influence performance and functions as a showcase to the
rest of the world of the esports University of Twente. The organisation consists of a team of
students from in and around Enschede (not just limited to the University of Twente) that are
working on Esports research, competition and awareness. The organisation works on various
challenging projects related to Esports, with the aim to achieve the primary goal: ‘’Taking
esports to the next level!’’

6

Esports Lounge Twente (EL) is a collaborative effort between Esports Team Twente (University
student-team), Blueshell (University of Twente Esports organisation) and the Student Union.
The lounge will be built in the Bastille and will be UT's very own esports facility. After realisation,
the lounge will include the following:

● Facilities for esports competition, tournaments and training.
● A community hub for students of the University of Twente and union card holders.
● Professional broadcasting equipment for streaming and recording.
● Multifunctional spaces for different types of events.

Students can reserve the lounge facilities when the lounge is open. Esports Lounge Twente
seeks to build its own reservation system to create, manage and view reservations for the
lounge.

7

Domain Analysis
This section analyses the domain of the specified system, which explains the process by which
information used in developing software systems is identified. The main objective of domain
analysis is to document all key information such that the development could be carried out with
ease and making sure that reusability and future development is plausible since the context in
which the software system is built are thoroughly explained (Prieto-Díaz, Domain analysis
1990).

Introduction
The system is brought into the reservation domain, and it concerns the process of reserving a
device or a facility in the newly constructed Esport Lounge, as well as the option of reserving the
entire lounge for events. It should also assist administrators in changing the schedule and
device and facility availability, as well as accepting or denying requests and bookings. The initial
plan of how the lounge will work was to make reservations by phone or in person. Also this
would have required a lot of paperwork for bookkeeping, following schedules and analysing
statistics. Since the mentioned processes are error-prone and require a training period for the
admins, the idea of investing in a reservation system came up.

Glossary
The terms device, facility, and request are used in this domain. Devices can include a
PC/Laptop/console system (e.g., Playstation/Xbox/Nintendo)/Vr-set and many more depending
on what types of devices the lounge introduces. Broadcasting or casting space is included in the
definition of a facility. This word can be extended in the future to incorporate newly defined
facilities. In this realm, request refers to reserving a portion (room) or the entire lounge for an
event.

General knowledge about the domain
Students can participate in a variety of events organised by Esports Team Twente, Blueshell,
and the Student Union. They also offer a number of services to students. Blueshell conducts
gaming events for the students' amusement, while Esports Team Twente researches and
develops gaming talents on a professional level. As a result, the system should accommodate
not only casual gamers, but also large-scale events and other activities.

Users, operators and concerned parties
The system is developed mainly for the needs of common students and the needs of Esport
Team Twente, Blueshell and Student union. The client of this project is mainly Esports Team
Twente but it also represents the interests of Blueshell and Student union. The system will be
operated by staff employed by Esports Team Twente. The staff would consist of students from

8

the University of Twente. They are the most prominent stakeholder when it comes to processing
reservations and requests.

Students from the University of Twente will use this system. When it comes to the reservation
process, they are the most visible stakeholders. Other parties, such as the University of Twente,
are primarily concerned with the system's ethical use and whether the system is available to all
parties (students and the three above-mentioned organisations). More about the stakeholders
and their interests and use of the system will be discussed below in the “Stakeholder” section.

The environment
The client provided no specifications for the software or tools that will be used to develop the
system, therefore it had to be started from scratch. The lounge itself is still under construction,
therefore we could not observe the processes. The only environment specific requirement
requested by the client was to use the University of Twente API for the login process. We chose
to use technologies that were familiar to the developer team. Heruko, a private cloud provider,
hosts the web application. We used Spring Boot with Gradle and a PostgreSQL database to
store the reservations and other useful information, such as the state of the interactive map,
during the application's development. For the backend we decided to use Java as the
programming language.

Tasks and procedures performed
There are currently no existing procedures, so we had to design the system's business
processes in collaboration with the client.

The administrator's point of view is critical. The admin staff will be able to view and filter all
reservations after logging in. They can also change the map/schedule and layout of the
application. It all depends on what they do after logging in. When they view the bookings, they
have the option to approve, decline, or cancel the reservation, depending on the type.
Another point of view is that of a student. The student will be able to login and view his or her
bookings, make a booking (reservation), or check notifications. If a student wishes to make a
reservation, he or she may do so for PC(s), broadcasting space, practice booth, or the entire
lounge. Furthermore, these reservations can be cancelled if there are reasonable reasons to do
so.

Similarities between other UT software
As the project of the gaming lounge is fairly new and still in development there is no existing
system that can be used by the staff of the lounge. So we had to develop the whole booking
system from scratch, without any previous stepping stones such as designs, databases, or
software. As a result of that, there are parallels with other booking/reservation systems used at
the university, as it would make the system a bit more user friendly and easier to navigate and
operate. The reservation system for study spaces on campus is an example of such a system.

9

Because the client is from Esports Team Twente and the system was created primarily for their
benefit, the layout is similar to that of their website and other deployed software.

10

Stakeholders

Onion model stakeholder
This section presents the different stakeholders that are present in the system such that
requirements are captured from all present stakeholders points of view (Alexander, A Better Fit -
Characterising the Stakeholders 2004).

Figure 1: Onion model stakeholder (Alexander, A Better Fit - Characterising the Stakeholders
2004).

11

Direct stakeholders

Students
Those are the end users of the systems and as such they are in the closest to the product circle
of the onion model. They are going to use the system to make reservations and requests.

Developers
Those are the providers of the reservation system and as such they are closest to the product
circle of the onion model. They are going to provide a functional and robust reservation system
as an end product of their work.

EL staff
These are the governance of the system. As such they are going to take care of the business
processes such as cancelling reservations, accepting requests, adjusting opening times and
adding/removing devices and facilities.

Client
This is the initiator of the project. It aggregates three organisations (Student union, Esports
Team Twente and Blueshell) and their common purpose - to obtain a robust reservation system
for the lounge. The client provides input (ideas and wishes) on how the system should work and
look.

Indirect stakeholders

Student union
A University of Twente student organisation that empowers the University of Twente students in
regard to university policies. It also organises events and provides services for University of
Twente students. Students can participate in the union with a subscription and with that they get
access to what Student Union is offering as services and facilities. With those cards students
can access the lounge as well.

Esports Team Twente
Esports Team Twente is the 7th official student team of the University of Twente. They
participate in esports competitions all around the world, develop and promote esports in the
region of Twente. It combines research and engineering techniques from multiple disciplines to
improve esports performance.

Blueshell
This is the student esport and gaming association of the region of Twente. They organise offline
and online events and provide opportunities for competitive gaming.

12

University of Twente
University of Twente is a technical university located in Enschede, Netherlands. In this project
the university is an indirect stakeholder and in that category is the one that is the farthest away
from the product. It is concerned mainly with the login process to the system because the
product is going to use university credentials and also this is the organisation that houses and
finances all of the organisations mentioned above.

13

Requirement Specification
This section describes the requirement specification that the system needs to have. The
requirement specification is heavily based on Agile methodology (Dingsøyr et al., A decade of
agile methodologies: Towards Explaining Agile Software Development 2012), the iterative loops
of development also occur in the requirement specification. Hence, these requirements need to
be clearly formulated and prioritised when specifying them, in which several methods are used
in order to achieve this.

Agile Project Management Approaches for Requirement
Specification
The project management methodology that is going to be used is the Agile methodology
(Dingsøyr et al., A decade of agile methodologies: Towards Explaining Agile Software
Development 2012). Thus, the requirements for the system are defined in iterative loops, which
ensures that the system has all the functionalities that the users need and the clients want. The
specific framework that is going to be used is Scrum framework (Adi, Scrum method
implementation in a software development project management 2015). We chose this method
as the Esport Team Twente Lounge Reservation System is at its core a brand new idea and
system with a lot of changes and experimentation for the final system. The scrum method allows
for the scope to be flexible in the development process and thorough involvement of the
stakeholders to achieve a system that fits the identity of the system.

As specified, the project methodology will work with iterations, also known as sprints, which is
iterated biweekly. Every iteration, a new section of the system will be completed, and there will
be a weekly meeting with the Esports Team Twente to discuss the progress and direction of the
development. Moreover, there will also be a meeting with the University of Twente supervisor
(Dr. Vadim Zaytsev) every two weeks to discuss the progress, remarks, or queries. The
development team will hold daily scrum meetings to forego miscommunication and will produce
a sprint retrospective each iteration to review performance.

Requirement Formulation
The requirement formulation will be based on the SMART method requirements (Mannion &
Keepence, Smart requirements 1995), this method guides the formulation of the requirements
such that they are specific, measurable, attainable, reasonable, and traceable. This results in a
simple and straightforward method that ensures requirements are clearly identified and
formulated, independent of assumption and ambiguity. In formulating requirements, this method
is crucial such that the functionalities that are going to be developed and tested correlates to
what the users’ needs and clients’ wishes.

14

Requirement Prioritisation
From the requirements that have been defined according to the SMART method, these
requirements are going to be prioritised based on the importance of the respective functionality
and the urgency for different stakeholders. The requirement prioritisation will be based on the
MoSCoW prioritisation method (Craddock, The DSDM Agile Project Framework 2014). The
method prioritises requirements based on the importance of the requirement for the system,
from a “Must”, “Should”, “Could”, and “Won’t”. With these criterias, the requirements could be
prioritised accordingly.

Stakeholder Requirements and System Requirements
As mentioned in а previous sections “Domain Analysis” and “Stakeholders”, there are several
parties (stakeholders) that want to get something out of the system. Thus, several requirements
are going to be formulated according to the needs of these stakeholders. These requirements
are called the “stakeholder requirements”. Based on these requirements, “system requirements”
are identified to fulfil a number of functionalities that need to be present in the system according
to the stakeholders needs. These requirements could be found in the section “Requirement
Analysis”

15

System Proposal
This section explains the system proposal in which it explains the conceptualization and
realisation of the project to the client in several meetings that we conducted throughout the
project. The proposal consists of requirements proposal, mockups proposal, system increment,
a usability testing proposal and a final presentation of the system to the client. Each of the
proposals happened in a sequential timeframe in which it was also presented to the client.

Meetings with client
The client was questioned during the initial meeting to assess the project's scope and
requirements. This was done to ensure that the parties' interests were adequately represented.
These discussions took the form of a Q&A session, in which we first gave a general overview of
the current concept before asking specific questions. There were also some open-ended
questions and opportunities for the interviewee to ask their own questions or express their own
ideas.

The meetings were held every week in order to ensure continuous feedback and involvement
from the client such that the system has all the functionalities that the users need and the clients
want. This is also due to the fact that we are following the Agile methodology, which was
explained in more detail in the previous section “Requirement Specification”.

Requirements proposal
As specified, in the initial meeting, the client was asked numerous questions to determine the
requirements that he had for the system. The client already had some requirements specified
for the system to be implemented. Thus, the meeting was held in order to dig deeper into these
ideas of the requirements and if there is anything else that the client wished to be implemented
in the system. Moreover, the client is also open to new ideas, in which some of the new ideas
are presented to him. These requirements served as a guidance in the development phase. It is
also important to mention that since we are following the Agile methodology, some new
requirements may emerge in each project iteration and some existing requirements may alter as
the client’s needs may alter in the next phase. More about the requirements and the risks that
are connected to them will be discussed in the next sections “Requirements Analysis” and “Risk
analysis”.

Mockups proposal
After the requirements are defined and proposed, these were used to visualise the initial
concept. The mockups were proposed and presented to the client such that the client could get
the look and feel of the system and be able to identify what he likes and dislikes such that it
creates a feedback loop. It also helps the client in setting and/or altering the requirements and
ideas for the system.

16

The mockups that were proposed helped the client to provide more detailed information about
their requirements and ideas, for example, where the sections of the reservation needs to be
and what each page should contain. The client also mentioned that the design of the system
needs to adhere to the style guide of the organisation itself, Esports Team Twente.

Figure 2: Example mockup of the main page in the client screen, showing all of the bookings
he/she made.

More of the mockups that were proposed can be found in the “Appendix” section under the
“Mockups” subsection.

Preliminary Design
Following the mockups, a number of system modelling were made such that the developer team
and the clients could see a preliminary design of the actual system that is going to be
implemented later on. In addition, it also helps the developer team in the conceptualization of
what is going to be built and foresee any future problems that might come along with it.

In the figures below, a number of system modelling that have been designed before developing
the actual system can be seen. This is done in order to adhere to the SCM (Software
Configuration Management) processes. It is important since Software Engineering (SE) would
be based not only in development, but also in other issues, such as architecture, building,
evolution and so on (Estublier, Software configuration management 2000). UML diagrams help
in a way that it captures the early phase of Software Engineering (SE), namely in system

17

analysis and system design. Moreover, UML diagrams are able to help in visualising differences
between documents in the early phases with an actual image and not only with lines of text, for
example, in a file representing a class diagram, each class might be represented by a few lines
of text (Ohst et al., Differences between versions of UML diagrams 2003).

Figure 3: The activity diagram of the system showing the possible administrative actions.

Figure 4: The activity diagram of the system showing the client perspective and the responsive
actions taken by the system.

18

Figure 5: The class diagram of the system showing the application structure.

19

Figure 6: The use case diagram of the system showing an initial version of the requirements.

20

Figure 7: The state machine diagram of the system showing possible states of reservation.

21

Figure 8: The sequence diagram of the system showing the flow of the application when setting
up the schedules.

Figure 9: The sequence diagram of the system showing the flow of the application when making
a reservation.

System increment
At the end of every iteration of the project, the system is incremented according to the planning
that has been defined. In each of the system increments, the client had the chance to use the
system itself by either a live demonstration of the system or explore on the client’s own via the
system that has been hosted in a website. This gave the client a chance to experience the
system on his own and to confirm if it fit the needs. This also enables the client to communicate
any suggestions for enhancements which will be then integrated into the requirements.

The system increment was very beneficial because it allowed the client to explore through the
system, giving them a sense of how the final product will look and feel like. This allowed the
client to provide more detailed comments if something was confusing or was not as what the
client expected. The result of the process is that the client was in general pleased with each of
the system increments and provided some feedback and input, such as clarifying the
requirements and adding new requirements. For the final system, the client added a comment
that the system was identical to his ideas and that the final result was as he had expected it to
be.

The system increment planning for each iteration can be found in the “Evaluation” section under
the “Planning” subsection.

22

Presentation proposal
The system was presented to the client at the end of the project. This presentation
demonstrated to the client the system's major purpose, which is the ability to reserve the newly
constructed Esports Lounge's resources. It also displayed the resulting application to Esport
Lounge Staff personnel, who will also be using the system as administrators.

23

Requirement Analysis
This section describes the analysis of the requirements from the stakeholders. The analysis of
the different requirements for the system contains “user requirements” and “system
requirements”. The criterias of analysis for the requirements are based on the system’s
capability in completing the correct functionalities, the system’s correctness in executing
functionalities, the system’s availability, or the system’s speed rate in executing functionalities.

Stakeholder requirements
1. As a student, I want to log in and out of the system.

A student must be able to log in and out to use the system using their student
credentials via University of Twente login portal system in order to reserve devices
and/or facilities, such as computers, broadcasting room, or the entire lounge.

2. As a student, I want to see available devices and/or facilities.
A student must be able to see the available devices and/or facilities, such as computers,
broadcasting room, or the entire lounge, that they can reserve at a given date and time.

3. As a student, I want to reserve available devices and/or facilities.
The primary objective for students in using this system is to be able to reserve the
available devices and/or facilities, such as computers, broadcasting room, or the entire
lounge. When this requirement could not be achieved, then the system loses its core
functionality.

4. As a student, I want to cancel the reservation.
A student must be able to cancel the reservation that they have made, such as
cancelling their confirmed reservations. The deletion could only be done when the
student has been confirmed of their reservation, which means that their initial reservation
needs to be accepted first by the administrator before being able to cancel the
reservation.

5. As a student, I want to be informed of my reservation via a confirmation message or
email.
Whenever a student has made a reservation and/or changes in the reservation, such as
making new reservations or cancelling the reservations, the student must be informed of
their reservation with a confirmation email to their student account or to their phone
numbers.

6. As an Esports Lounge staff, I want to log in and out of the system as an administrator
An Esports Lounge staff must be able to log in and out to use the system as an
administrator using the employee credentials in order to manage the students’ devices
and/or facilities reservations, such as computers, broadcasting room, or the entire
lounge.

24

7. As an Esports Lounge staff, I want to confirm devices and/or facilities reservation
requests.
An Esports Lounge staff must be able to confirm the devices and/or facilities reservation
requests, such as computers, broadcasting room, or the entire lounge, that were made
by the students from the reservation system. This also holds every time the student
makes any changes to the reservation.

8. As an Esports Lounge staff, I want to deny devices and/or facilities reservation requests.
An Esports Lounge staff must be able to deny the devices and/or facilities reservation
requests, such as computers, broadcasting room, or the entire lounge, that were made
by the students from the reservation system. This also holds every time the student
makes any changes to the reservation.

9. As an Esports Lounge staff, I want to be able to have the option to cancel a student’s
reservation.
An Esports Lounge staff must be able to have the option to cancel the devices and/or
facilities reservation that the student has made in case an unexpected event arises.
There could be an unexpected event, such as match events or staff unavailability that
happens after the reservation has been confirmed by the administrator.

10. As an Esports Lounge staff, I want to be able to view all made reservations in an easily
readable overview/timetable.
An Esports Lounge staff must be able to view the reservations that students have made
in an overview in the form of a timetable. This overview will give a better understanding
of the lounge state on the reserved and available computers or rooms for the staff.

11. As an Esports Lounge staff, I want to be able to have the possibility to set the times that
the lounge is open and reservations should be possible.
An Esports Lounge staff must be able to set the opening time and status of possible
reservations. The opening time of the lounge would give an indication of when students
could reserve the devices and/or facilities, such as computers, broadcasting room, or the
entire lounge. Moreover, the staff must be able to indicate if devices and/or facilities are
not available to be reserved because of availability reasons, such as the computer is
being repaired or the room is being renovated.

12. As an Esports Lounge staff, I want to be able to add devices and/or facilities.
An Esports Lounge staff must be able to add devices and/or facilities in the system such
that these devices and/or facilities could be reserved by the students and appear in the
students’ reservation system interface. These devices and/or facilities could be, for
example, computers, private room spaces, or broadcasting spaces.

13. As an Esports Lounge staff, I want to be able to remove devices and/or facilities.

25

An Esports Lounge staff must be able to remove devices and/or facilities in the system
such that these devices and/or facilities could not be reserved by the students and does
not appear in the students’ reservation system interface. These devices and/or facilities
could be, for example, computers, private room spaces, or broadcasting spaces.

14. As an Esports Lounge staff, I want to be able to change the style of the application
layout
An Esports Lounge staff could change the style of the application layout in the system,
such as fonts, colours, and logos, to be matched with the style of different teams or
events.

15. As an Esports Lounge staff, I want to be able to provide a limit of the booking time and
maximum number of devices being reserved per booking.
An Esports Lounge staff must be able to provide the up-mentioned limits, leaving the
responsibility for validation to the application.

System requirements

Functional requirements
1. The reservation system must be able to let students log in and out with their UT account

or DMS-account (Unioncard).
The mechanism which is used is the University of Twente account or DMS account login.
This is easy to understand and the users do not have to remember another username
and password.

2. The reservation system must be able to reserve devices and/or facilities.
The system must be able to reserve devices and/or facilities for the specific students that
made the reservation. The reservation of the devices and/or facilities could be a single
computer for personal use, a block of computers for their practice space, broadcasting
spaces, or the entire lounge.

3. The reservation system must be able to let students cancel their reservation.
The system must be able to let students cancel the reservation, such as cancelling their
confirmed reservations. The deletion could only be done when the student has been
confirmed of their reservation, which means that their initial reservation needs to be
accepted first by the administrator before being able to cancel the reservation.

4. The reservation system must be able to inform students about the reservation
confirmation by messages or email.
The system must automatically send a confirmation message to the student about their
reservation via messages or email whenever the student has made a reservation and/or

26

changes in the reservation, such as making new reservations or cancelling the
reservations.

5. The reservation system must be able to let the Esports Lounge staff a way to log in and
out as admin.
The system must be able to have an interface for administrators to be able to log in and
out of the system as an administrator using the staff credentials in order to manage the
students’ devices and/or facilities reservations.

6. The reservation system must be able to give the Esports Lounge staff the option to
cancel a reservation.
The system must have an option to cancel students’ devices and/or facilities reservation.
The system must also ask the reasoning of the reservation cancellation, for example,
match events or staff unavailability that happens after the reservation has been
confirmed by the administrator. The student should then get a confirmation message
when the cancellation occured.

7. The reservation system must be able to let the Esports Lounge staff easily view all made
reservations in an easily readable overview/timetable.
The system must have an overview of all the reservations that the students have made
in the form of a timetable such that the Esports Lounge staff could see the lounge state
of the reserved and available computers or rooms.

8. The reservation system must be able to let the Esports Lounge staff confirm devices
and/or facilities requests.
The system must send a confirmation to the administrator when students made a
reservation on devices and/or facilities, such as computers, broadcasting room, or the
entire lounge. The system should then have an option for the reservations to be
confirmed by the administrator.

9. The reservation system must be able to let the Esports Lounge staff deny devices and/or
facilities requests.
The system must send a confirmation to the administrator when students made a
reservation on devices and/or facilities, such as computers, broadcasting room, or the
entire lounge. The system should then have an option for the reservations to be denied
by the administrator.

10. The reservation system must be able to let the Esports Lounge staff the possibility to set
the times that the lounge is open and reservations should be possible.
The system must be able to have a schedule of when the lounge is open or closed, and
in these open time periods, students could reserve the devices and/or facilities, such as
computers, broadcasting room, or the entire lounge. Furthermore, the system must have
a state of all computers and/or rooms if they are available or not available to be reserved

27

because of availability reasons, such as the computer is being repaired or the room is
being renovated.

11. The reservation system must be able to add devices and/or facilities for students to
reserve.
The system must have an option to add devices and/or facilities and in which these
devices and/or facilities could be reserved by the students and appear in the students’
reservation system interface given that these are available and have not been reserved
by other students.

12. The reservation system must be able to remove devices and/or facilities for students to
reserve.
The system must have an option to remove devices and/or facilities and in which these
devices and facilities could not be reserved by the students and does not appear in the
students’ reservation system interface. They must have types, which in case of devices
must be dynamically creatable with variable names and images.

13. The reservation system should be able register full facilities reservations within the DMS
system of the University through an API connection.
The system should be able to automatically register the full room reservations in the
DMS system of the University of Twente using the University of Twente API connection
whenever there are fully made facilities reservations in the system.

14. The reservation system should have an interactive map with all the devices and facilities
on it representing the real lounge.
The system should be able to show an interactive map that shows all the available
devices and facilities computers on it based on the current floor plan of the lounge.

15. The reservation system could change the style of the application layout.
The system style, such as fonts, colours, and logos, could be changed to be matched
with the style of different teams or events by the Esports Lounge staff.

Non-functional requirements
16. The system should handle the users' and/or administrators' login within 30 seconds

The system login should take a maximum of 30 seconds from the moment the user
and/or administrator clicks the login button. The accuracy has to be very high, such that
if someone logs in and gets to see another profile, the system made a huge mistake at
the security level, namely privacy breach.

17. The system should use the Esport Lounge Twente style guide for the frontend.
The system style, such as fonts, colours, and logos, should use the same style of the
Esports Lounge Twente style.

28

18. The system should send confirmation email/message for a reservation within 30
seconds.
The system confirmation email/message should take a maximum of 30 seconds from the
moment the user makes a reservation. The accuracy has to be very high, such that if
someone gets an incorrect confirmation email/message, the system made a huge
mistake at the security level, namely privacy breach.

19. The system should be available 24/7 except in case of maintenance.
The system should be usable at any time by users and/or administrators such that they
can manage reservations at any time. In case of maintenance, the system should inform
the users and/or administrators at least 5 days before the maintenance.

20. The system should be able to handle at least 5000 requests concurrently, either by users
and/or administrators, at the same time without degradation of performance
The system should be able to handle at least 5000 requests at the same time without
any performance issues from the users and/or administrators side.

21. In case of a breakdown, the system should roll back all of partially made reservations.
The system should not save any reservations that have not been made and/or confirmed
by the users if there is a sudden shutdown or breakdown, for example, when the server
fails or when users' local machine disconnects.

Risk analysis
This section explains the conducted risk analysis and assessment associated with this project.
This analysis is performed in order to increase the success rate of the project itself, as we can
plan and mitigate high-risk upfront. We identified each risk based on its category, owner,
likelihood, impact, and what action should be taken. The scale of likelihood indicates the
probability of the risk occurring. Whereas the impact indicates how severe the risk is towards the
organisation. The likelihood will be measured with a scale from 1 (lowest) to 5 (highest), and the
impact will range between 5 levels as well, from insignificant, minor, moderate, major, and
catastrophic, respectively. The risk owner column classifies who is responsible for controlling
and monitoring the specified risk. While the action column specifies how we are going to deal
with the risk. The last column is for the risk rating, which is the combination of likelihood and
impact. The risk rating will be ranging from 1 (lowest) until 25 (highest).

Needless to say, all the risks mentioned below are really dynamic, and we consider it essential
to monitor and adjust accordingly throughout the entire project process.

ID Description Category Owner Likelihood Impact Risk
Rating

Action

R1 Fail to connect with the
external login system

Technical Developer 4 Major 16 Mitigate

29

R2 Fail to preserve correct
dates and times

Technical Developer 3 Major 12 Mitigate

R3 Time schedule
exceeded

Project
Execution

Project
Manager

3 Major 12 Mitigate

R4 Insufficient/missing
quality of the new

system

Technical Developer 2 Major 8 Plan

R1: Connecting the new system with the external login system
Description
The most critical issue is having our software system connected with the University of Twente
API to be able to use their login system. Forwarding the credentials must be done in a fully
encrypted manner, also securing the piece of the system responsible for this task, so no
external actions can affect it.

Category
We classify this risk under the technical category since the integration for the system suggests
mainly on the organisational and technical side. The reason for this is because we might not find
a way to complete the task because we are not able to contact the external people responsible
for the login system.

Owner
The owner of this risk is the developer team of the project. The developer team are the ones
responsible for integrating the Universities’ login system with the new reservation system. The
integration needs to be completed by the developer team.

Likelihood
We classified this potential risk occurrence on a scale of 4 out of 5. The reasoning behind this is
due to the fact that this project is quite a new implementation of the system, where we will be
also using an external login system. A lot of parties are also going to be involved in this project
which makes it even more difficult to organise the technical side.

Impact
Moreover, the impact of this risk is quite major. If this risk is to happen, then the new reservation
system would not be available to be used by the users, which are the students of the University
of Twente.

Risk Rating
This risk has a rating of 16 out of 25, which is quite high. Therefore, we are planning to mitigate
this risk by the action explained below.

Action

30

The mitigation strategy that we will use to prevent this risk from becoming reality is to do partner
research. The network of contacts that the client Esport Team Twente has, should make it
easier to find developers which already know about the documentation of the external login
system that is connected to the University of Twente login system. They could potentially be
interested in helping with the implementation of the new reservation system. Furthermore, if we
are not able to connect the new system with the external login system, we will add our own login
system for the new system that does not relate to the external login system.

R2: Preserving correct dates and times
Description
The issue is regarding preserving correct dates and times, as this is one of the main elements in
our application. This can become a serious problem, interrupting the work of our clients if not
being handled properly. Since every browser uses the device’s local timezone, we will convert
them to UTC according to ISO_8601 standard and convert to the client’s local timezone. This
action will make us the controllers of dates and times, therefore the risk will be minimised.

Category
We classify this risk under the technical category since preserving correct dates and times for
the system suggests mainly on the technical side.

Owner
The owner of this risk is the developer team of the project. The developer team are the ones
responsible for preserving correct dates and times for the new reservation system. The feature
needs to be completed by the developer team.

Likelihood
We classified this potential risk occurrence on a scale of 3 out of 5. The reasoning behind this is
due to the fact that this project is quite a new implementation of the system, but fortunately, we
have documentation and good practice in accordance of ​​ISO_8601 standard.

Impact
The impact of this risk is quite major. If this risk is to happen, then the users might not be
reserving the correct dates and times which will lead to chaos for the administrator, which are
the Esports Lounge staff.

Risk Rating
This risk has a rating of 12 out of 25. This is a moderate one, however, we still think that we
need to mitigate this risk considering the impact it might have on. This mitigation can be
achieved by means below.

Action
Since the consequences of this risk are quite severe, we have to mitigate this risk. The
mitigation strategy that will be used to prevent this risk from becoming reality is to do best
practice research. The available documentation ISO_8601 standard already covers the basics

31

on how the issue could be mitigated. Therefore, these practices can be studied and applied in
the new reservation system.

R3: Time schedule exceeded
Description
This risk is about the expected duration of the project execution, occurring if the project takes
longer than it should be. This also tightly knit with the above risks, as if the above risks
occurred, most likely this risk will also occur to fix other issues. Moreover, this is tied to the
fourth risk where we would have insufficient/missing quality of the new system if the time
schedule has exceeded the deadline.

Category
We classified this risk under the project execution category since it is related to how effective we
can plan and execute the project within the given timeframe.

Owner
The owner that suits best to take this risk is still the project manager, as the project manager will
also be the one making the schedule for the project.

Likelihood
We considered the probability that this risk happens is at level 3 out of 5. We are aware that this
project will involve a lot of different main stakeholders in its process. Therefore, there will be
highly reliant situations on each other, which will lead to unforeseen schedule delay.

Impact
We put a major impact on this risk since the impact of delay for the current organisation without
the new system is significant.

Risk Rating
This risk has a rating of 12 out of 25, the highest risk that is mentioned in the risk analysis
section. This risk will be the priority when addressing the project. We are planning to mitigate
this risk by the action mentioned below.

Action
We plan to mitigate this risk by making a realistic activity estimation on each milestone and
deliverable. Making the project scope clear is also required. Unclear project scope might lead to
different products delivered than the client expects. In consequence, a rework on the product
should be done which will take more time, causing a delay. A daily meeting with the
stakeholders for each milestone achieved is also desirable.

R4: Insufficient/missing quality of the new system
Description

32

This risk covered the case of incomplete qualities of the new system. This risk also accounts for
the functional and non-functional qualities of the new system. For example, functional quality
could be something like incomplete features, and nonfunctional quality would be security for the
new system.

Category
We classify this risk under the technical category since the quality of the system suggests
mainly the technical side.

Owner
The owner of this risk is the developer team of the project. They are the ones designing and
executing most of the project functionalities. Insufficient or missing quality should be discussed
with the development team.

Likelihood
The probability of this risk to occur is 2 out of 5. This risk is not likely to occur since we are
working with the agile development methodology, which requires a certain milestone and
deliverables to be presented every week. This will make sure all the qualities meet the client's
expectations. A good communication process between the developer and the stakeholders will
also lower the chance of this risk happening.

Impact
However, for the impact, we would categorise this as a major one. If the final deliverable has
some quality issues or missing functionalities, the system might fail at any point and cannot be
used by the organisation. This would greatly affect the organisation's performance.

Risk Rating
This risk has a rating of 8 out of 25. This risk is considered a moderate one and will be in a
lower priority compared to others. The action that we are going to take regarding this is to do a
planning, which is explained further below.

Action
The action that we are going to take regarding this risk is the plan of action. The developer team
must ensure that all project deliverables are achieved in each sprint. A contingency plan should
be made available beforehand for each sprint and deliverables. If any certain factors make it
impossible to accomplish a certain product deliverable, the developer must let the project
manager know and run the backup plan accordingly.

33

System Design
This section describes the design choices that we have chosen for the visual representation of
the application in the form of the user interface. Furthermore, the system’s functionalities are
also elaborated and explained in detail.

System description

Figure 10 : The class diagram of the system showing the application structure.

In this figure there are nine classes. They represent the core of the system and the objects that
are going to be created and used in order for the system to function. Class “User” is the class
that represents as the name suggests the user of the system. A user has an email, id and
authorities. The last one is used to differentiate between the common users and administrators.
Unique id is used in order to connect the reservations to the user. Email is needed in order to
send confirmations after a reservation has been made. All of this information is being sent by
the SSO login point from University of Twente. User class makes reservations and receives
notifications. The notification class has message, id, timestamp and read boolean value. Id
represents the notification and differentiates it from other such notifications. Read is used to
check if a notification has been read by the user. Timestamp represents the date and time at

34

which the notification is created. AbstractReservation is the parent class of Device and Facility
reservation classes. It makes use of the enum class ReservationStatus. This class contains the
shared information between its child classes. It is characterised by reservee, from, to, remarks,
id and status. “Reservee” is a User class object. “From” is the date and time from which the
reservation starts and “To” the date and time at which ends. Remarks are for in case the reserve
has any comments about his/her reservation. Status indicates if the reservation is accepted,
rejected, pending or cancelled. DeviceReservation and FacilityReservation inherit all the
elements in AbstractReservation as child classes but they are also characterised by lists of
devices and a facility respectively. And those are objects from the classes Device and Facility.
Device is represented by position, code, enabled, the boolean reserved and the device type,
which could be console, laptop or desktop. Position shows where in the lounge the device is
located and code the number given by the lounge staff to recognize the device. Facility class
contains id, facility type, enabled, reserved and name. The facility type takes the values event,
broadcast and tournament from the enum class FacilityType.

35

Figure 11: The application structure of the configuration part.

A second part of the system is represented on this class diagram. It concerns the setting of the
application. ApplicationSettings is the main class here characterised by auto acceptance of
lounge and device reservation, schedule of the lounge and id. Auto acceptance gives the
possibility to control if a reservation is going to be accepted by the application or it needs an
administrator to do so. Lounge schedule contains an object of the class week schedule. We can
have multiple schedules created and choose one of them for the time being and change it to
another existing one if needed. The WeeklySchedule contains seven objects of the class
DaySchedule and a name of the weekly schedule (e.g. “Easter week”, “King’s day week”). The
DaySchedule class has “isClosed”, working times and name. “isClosed” indicates if the lounge is
closed during that day. Working times show at which times during that day the lounge is open.
Name indicates the day of the week (e.g. “Monday”, “Tuesday”, etc.).

Design choices
Some of the more interesting design choices that we made are:

● Alerts
We decided to add toasts to most of the actions that are done in the application,
because we wanted to have a signal that would tell our users that the actions that they
perform have either been successful or not. In almost all cases, we use toast in the
corner of the window and the reason for this is because we did not want to include
additional clicks to close a notification/alert for proceeding with your work in the
application.

● Mailing and confirmation
Mailing and confirmation was added as we wanted our users to know that their bookings
have been accepted/declined/cancelled. It was a wise design choice to do the mailing in
an asynchronous way, since it is a really expensive process, which can hurt the
performance. This is why we made use of the Spring Events, which can execute jobs in
an async mode.

● Navigation bar
The navigation bar in our application is on the left. There was a discussion about where
to put the navigation bar. It was decided that it will be on the left because of another
booking system that the University of Twente provides for project room allocations. In
order to keep both systems in consistency with each other, we made this choice.

● Clickable units
Adding hover effects to various buttons was a decision made to make the user
experience better. We decided to add the colour change and tooltip displaying the task
that button performs when hovering on it as we think that it is more intuitive for the user
to identify which parts of the application they can interact with and what they do. We
have also added hover effects that display the name and type of the device as well as

36

from which times that device or facility is reserved so that the users can have additional
information on the device.

● Roles
One of the most significant design choices that we made in regards to security was
having three types of users - Client, Admin, Superior Admin. The superior admin has full
control over the system - adding and deleting admins while the regular admin can only
perform part of the actions. Having a hierarchy in the admin roles removes the possibility
of administrators to abuse the system.

● Filters, sorting and pagination
We have added a highly configurable option for displaying reservations, as with growth
of the dataset, it will be harder to navigate through the bookings. This is why we added
pagination for improving performance by fetching a limited number of entries, sorting for
having the reservations in certain order and filtering for finding the reservations you are
interested in. We have also added a search bar from which the admins can search for
various types of reservations: on name,device, remarks.

● General settings
Aim of every system should be to make everything highly configurable and easy to
operate with. This is why we discussed with our client and added a setting for almost
every part of the application, which can be controlled by such parameters. This will make
the services of the system easily changeable in the future providing better alternatives
for the administrators.

● Device types
We made it possible to make use of all the existing bootstrap icons, when creating a new
device type. This way it is possible to make the representation of every type look
different for the users. This was done, because in the future new devices will be bought
for the lounge and by creating this abstraction the administrators can easily create new
types without having to release a new version of the system.

● Scheduling
Our client demanded that we make a flexible working schedule for the lounge and this is
why we made every part of a calendar to be creatable, editable and deletable. Firstly
there are day schedules, which represent a working time representation of a single day.
By using the day schedules, you can create week schedules, when you pick a schedule
for every day of the week and in the end you can put an active week schedule for the
lounge. This way you can create as many days and weeks as you want and easily
interchange the working time of the lounge. Since it could happen that you want to
disable a specific date, such as when there is a tournament, we also made the day
schedule exceptions. This is a day schedule, which will overwrite the working time for a
specific date. This was all talked through with our client and will satisfy all their needs
and edge cases that may occur.

37

Functionalities
In this section we are going to explain the core functionalities of the system with explanation on
how to use them.

● Login with University of Twente credentials
In order to enter the system, the user must be registered in the University of Twente
database, because the reservation system is integrated with their SSO login system.

● Create devices and pick their position in the lounge
This is one of the most crucial features in order for the reservation system to function
well. In order to make a reservation, there should be an available device, which you can
book. For this to be possible, we made in the administrator panel an option in the
settings in which you can create a device. The device can have a unique identifier in the
lounge, a device type and if we want to disable it in case of technical problems with that
device. Beforehand, you must have created a device type, as we know how fast
technology changes, we decided to make that flexible. The device type contains a name
and an icon, which will represent it in the map. After the creation, you will be able to see
all the devices of the lounge in a table overview. The next step is to go to the interactive
map tab and position them according to their physical location in the lounge. This will be
the map shown, when making a booking.

● Create facilities and and pick their position in the lounge
The second booking type we support is facility. The scenario is the same as in the
devices, with the difference that the facility types are broadcast, competition or training
and you pick a whole room, which is suitable for this type in the lounge. Our interactive
map will be displayed when creating the facility, allowing the admin to pick an available
room to serve as the specified type. This will give the possibility for users to book a
facility in the booking screen.

● Create flexible working time schedules
There is a functionality of making working time schedules or more specifically from what
until what time reservations are possible. For this to work, the first step is to go to the
day schedules tab in the settings and create one. It is possible to pick from one to
several ranges of time throughout the day or mark the day as day off. After creating a
day schedule, the admin can go to the week schedules tab and structure one, using the
previously created day schedules. For every day of the week, there could be different
schedules. There is the freedom of creating as many day schedules and week schedules
as the admin wants. The last step is to go to the general settings and set the current
active week schedules, which the lounge will follow. This will restrict the booking time
slots to the specified active schedule for the respective booking day. There is also a
possibility to add a day schedule exception, which will override the day schedule for a
certain date. This gives us the ability to create exceptions in the schedule, without
interrupting the future weeks.

38

● Add administrators
The flexibility of the administrator’s privileges should not be neglected and since the
lounge is formed from student organisations we added the possibility to delete and add
users, who will have admin roles. This could be easily done only as a global admin,
which can be assigned by the developers or maintainers of the website. In order to give
users such roles, you must go to the admins panel in the settings and either delete or
add a new admin by specifying the name and email address.

● General settings
In the general settings tab, there are configurations for the admins to choose from. It is
possible to give the system rights to automatically accept reservations, to restrict the
maximum booking time length, the maximum number of devices and as mentioned
before the active week schedule.

● Create reservation with acceptance/rejection
When the administrator part is all set up, all the users can now make bookings. To do so
the user has to pick from the make a booking panel what type of reservation he wants to
make. It could be a device or facility. Then the booking screen appears in which it must
be given the date and from, to the time slot for which the reservation should be made.
After this step is finished the interactive map will be populated with all the
facilities/devices. If an entity is busy for the whole time slot it will be in red, if it is
partly-busy (not occupying the whole time slot), it will be in yellow and if it is free it will be
black. You can select an entity by clicking on it. The last box is for entering any
comments and remarks. The last step is reviewing the reservation details, which will
appear in a modal and you can either agree or cancel. If the auto acceptance is not
enabled, the admin must accept or reject the bookings made. This happens in the
pending bookings panel. A booking is valid only after it is put in an accepted state.

● Check your bookings
In the my bookings tab, you can get an table overview of all the bookings made by you.
The table is filterable and sortable, so the user can set it up to his preferences. It
displays all kinds of useful information such as time, status and location of the booking.

● Check all bookings
Every admin is able to see all the bookings made in a filterable and sortable overview
table with all the information about them.

● Receive email notifications upon cancellation/acceptance/rejection
Upon changing the state of a booking, the reserver will receive email notification with the
changes and details of his reservation.

39

System Development
This section describes the technical choices and characteristics of the system. The description
of the system implementation is justified here along with the implemented design choices and
functionalities.

Programming languages and frameworks
● Database

For database software we chose PostgreSQL, for the simple reason that all of the team
members had experience with it. Other than that, pgSQL has an advantage over other
choices as it supports transactions, which helps us to provide data atomicity,
consistency, isolation and durability, all kinds of indices for different use cases,
full-text-search and really useful types like ‘jsonb’ and its functions. All the features
integrated in this DB software helps us to provide consistent solutions to a wide range of
problems. For schema-management we use Flyway migrations. This is a tool that allows
us to store our database creation statements in version control software as well as
provide incremental builds, do checksum checks to prevent faulty changes and
description of what each migration is for.

● Back-end
For backend language, we picked Java because of its ecosystem and enormously
powerful library tools, enabling us to easily build business logic. For the framework we
chose Spring Boot, since it provides a production-ready environment, which is highly
configurable and gives a lot of flexibility for design choices. We stick to the layered
architecture Controller-Service-Data, separating the concerns at every layer. The
controller handles the HTTP requests passed from the dispatcher servlet, the service
handles all the complex business logic and the data layer is responsible for querying and
saving data to the database. Along with that we use Spring JPA and Hibernate to act as
middleware between our application and database and it removes the weight of the
shoulders of the developers to write manually SQL queries for every task. Of course, this
comes with consequences of performance issues, but we strived to stick with all best
practices and provide efficient solutions to all problems. For securing our application, we
chose Spring Security because its integration with the rest of the Spring ecosystem is
extremely easy and it fit perfectly with the OAuth2 integration we had to implement,
leaving us to specify only a few configurations to make it fit our requirements.

● Front-end
For the user interface, we picked the simplest option and used plain HTML, CSS and
JQuery, as they satisfy our needs and all the team members were experienced with
them. For styling we used Bootstrap as it contains a useful grid system and wide range
of different styled components ready for use.

40

System description
● Database

In the database, we use all the default settings, so we will explain a bit on what types
and indices we used and why. For all the primary keys we use the ‘bigint’ type, because
it provides much larger range than ‘int’ and as we could not predict the scale of which
our application will grow, it was safer to use this type. For id generation, we’ve created a
sequence to take care of that, because hibernate supports it as and it enables us to do
batch updates and inserts. The fundamental difference is that this strategy does not
require you to have the previously added entity’s id, but it directly gives you a range of
available integers, which the database can use. For all date related fields, we use
‘timestamp’ as this is the required type from Hibernate to correctly map between the
Java types and pgSQL types. For all lists we store, we use ‘jsonb’, since pgSQL
provides really fast indexes to search for elements through the jsonb column and we
needed that to validate the authorities of the user sending a request.

● Back-end
As soon as a request hits one of the controllers, we are being passed a data transfer
object, which is serialised from a JSON object. The reason we use DTOs is simple: we
are using ORM framework, so if we use our entities to send and receive data, this will
expose our internal structure of the database, which can have security consequences.
Another reason is that DTOs provide us with the ability to restrict what the user can see
in different situations, such as not having authority over some fields or just there are
unnecessary fields, which would only increase the network latency. The next step is to
either convert the DTO to an entity or directly pass the DTO to the service layer, which is
responsible for business logic. This is where we start to use transactions, in order to
prevent all types of non-ACID actions. The default level is used, which is read
committed. This disables seeing changes, which are not yet committed by another
transaction. This suffices our use case, as we never modify more than one entity at
once. All of our business logic starts with validation of the passed object. We check if all
the fields are correctly filled, if there are no overlaps for instance with another booking,
etc. After all the validations are successfully passed, we modify or add the passed entity.
In case there is an error with the validation, we throw an unchecked exception, for the
transaction to roll-back. In many places our application will grow in size and this is why
we inserted pagination for the table related pages. Luckily Spring JPA has a built-in Page
class, which helps us easily to get a set of entities with an offset and page size and
satisfy our needs. Working with a large dataset would also require adding nice sorting
and filtering in order to easily browse through that set. For sorting, we again use the
built-in Sort class, which modifies the query to give us the entities in the ordered list. For
filtering, we made use of the so-called Criteria Builder. This is a Java class, which helps
you to dynamically build a SQL query using Java. Using it we could easily add a check
for a certain field and return the correct result with minimised effort. The last interesting
part of the system is how we handle mail sending. Since that is a really expensive action,
we couldn’t just send it in our business logic, as this will slow down the responsiveness

41

of our application. This is why we made use of the Spring Event handling and Java Mail
API, which gave us the ability to create an event class to handle the receiver information
and content and event listener to send the email using Java Mail API, while all of this is
handled in asynchronous mode. This means that this is executed by another thread,
which is not associated with handling the request sent by the user. The rest of the
system is following common Java conventions and practices.

● Front-end
In the front-end we strived to separate all the pages, each having a JavaScript, CSS and
HTML file, which implies a lot of repetitive code, but that is one of the disadvantages of
not using a modern framework and using reusable components. Still, the speed with
which our pages render, fetch data and display it is maximised. Every page initially starts
with rendering the navigation bar and sending all the necessary AJAX requests to the
backend for the required data. If there are fields for inputting information, they are always
validated before being sent, giving a simple error sign to signal the user that there is
something wrong. All the errors in our application are being shown by a utility function,
which can add a toast on the screen for a successful or failed task. For tasks, which are
not supplied by html, such as date and time picker and more user friendly select fields
we use libraries only from JQuery-UI, as they easily fit with the rest of the JQuery
environment. The most intriguing part of the front-end is the interactive map. We drew it
using the HTML canvas, which gives the possibility to do all the figures you can think of
and Path2D to simplify the creation of the lines. We create it in an utility function, which
helps us to render the map at different pages easily.

Login system
For integration of the Microsoft Single-Sign-on point, which the University of Twente uses, we
needed a bit of information from them. In order to connect, your system must be registered in
LISA’s security registers, which generates unique client ID, secret and metadata. Upon entering
the reservation system, Spring security will check if the requested endpoint requires
authentication and if so it will search for a session token, in order to give the principal details to
the thread which will serve the request. If such a session or token does not exist, it will forward
you to the Microsoft login page. Most of the magic happens behind the scenes. The
configuration needed from our side was to specify which endpoints require authentication and
set login and logout handlers. The login handler is responsible for redirecting the user to the
correct page if he is admin or not and the logout handler is responsible for clearing the session
associated with that user and its session-token cookie. Everything else is being handled by the
default OAuth2 configuration of Spring security.

42

Testing
This section describes the test plan and the test results that have been defined and executed.
The test plan defines and explains the approach in testing different functionalities and features
along with the testing pass criteria. Moreover, the risks and contingencies and the schedule in
which the testing is executed is also explained.

After executing the test plan, the test results of the unit tests, integration tests, results of the
different approach in testing different functionalities and features are also defined. Based on the
test results, some of the system designs have been adapted and bugs were identified and able
to be solved.

Test Plan

Approach
We will approach testing from three different perspectives - unit testing, integration testing and
usability testing. We will strive for maximum possible coverage of the code. Unit and integration
testing will cover mainly the backend of the system and usability testing will focus on the
front-end of that same system. We cannot test external features such as login which is
dependent on how well the university API is working but we are under the assumption that it will
work robustly.

Unit testing
Jupiter Junit tests in conjunction with Spring framework will be used. They will cover the
separate functionalities and their edge cases in the backend. We will strive for maximum
coverage of all lines of code of the critical features.

Integration testing
Integration testing will be used to cover the gaps of the unit tests in the backend. The reason is
that even though unit tests might show promising results on how features work separately, using
them in conjunction with one another might still show some unexpected behaviour. Our
approach will be a top-down approach using the system as a black box to which we give input
and check for the expected result. Different test cases with steps will be created to verify that all
the critical business processes are covered. We will be using Postman, as we have a small
amount of endpoints.

Usability testing
This will be used to cover the frontend of the system and the intuitiveness of the design. As
developers we cannot do that because we created the system and as such we will have biassed
opinions about the design. Because of the nature of the project (reservation system) we will try
to draft people from different time zones to test the robustness of the system in such cases. We

43

will have a mixed approach using remote usability testing and the expert review heuristics of
Nielsen (Nielsen & Molich, Heuristic evaluation of User Interfaces 1990).

Visibility of system status - The system should always keep users informed about current
state and actions through appropriate visual cues and feedback within reasonable time.

Error prevention - Good error messages are important, but the best designs carefully prevent
problems from occurring in the first place. Either eliminate error-prone conditions, or check for
them and present users with a confirmation option before they commit to the action.

Aesthetic and minimalist design - Interfaces should not contain information which is irrelevant
or rarely needed. Every extra unit of information in an interface competes with the relevant units
of information and diminishes their relative visibility.

Consistency and standards - Users should not have to wonder whether different words,
situations, or actions mean the same thing. Follow platform conventions.

We are going to draft potential users of the system (University of Twente students) to test the
student perspective of the system. From the administrator perspective, we are going to draft
potential employees that are going to operate the system in the future and we are going to do
that in conjunction with our client. The test will consist of a series of tasks defined by use
scenarios that needs to be completed by the users and administrators. They are then also going
to be asked to speak what comes into their mind such that more feedback could be received
(Sharp et al., Interaction design: Beyond human-computer interaction 2009).

A pass for these tests is considered the user satisfaction with the design of the system
according to the heuristics above. This means that the test passes when the users can
complete these tests without any problem.

Features to be tested
In this section we are going to list the features that need to be tested. The features are the most
important ones because without them the system will not be what the client and the users would
expect. Their level of risk is marked with 1-5 scores (1-lowest risk, 5-highest risk).

Features Level of risk

Reserve a device/facility 5

Cancel reservation as a student 5

Deny device/facility reservation requests 5

Add devices and/or facilities 4

Remove devices and/or facilities 4

44

View all the reservation 3

Set times for reservation (when the lounge is
opened)

5

View all made reservations 3

Inform the students about a
confirmation/change of their reservation via
email

4

Log into the system 5

Log out of the system 5

Change the style of the application layout 2

Item pass/fail criteria
Items with a 4-5 score must be completed, and their tests must pass without error. While items
with scores 1-3 are allowed to have minor issues as long as they do not obstruct critical
business processes and functionalities required for the system to be considered "complete."

Risks and contingencies
We have two main risks in this project. One is due to the nature of the methodology of
development using Agile (Abrahamsson, Agile Software Development Methods: Review and
Analysis 2002) and another due to external factors such as logging in using University of
Twente credentials.

The former one creates risk whenever new requirements are introduced in the project which can
endanger the scope and the time it would take for the project to be finished fully. If too many
new requirements might overwhelm the developers team. This would automatically mean that
testing will increase. This risk can be mitigated by good time management and with the
immediate and consistent testing during the sprints.

The latter one is dependent on external factors such as how smooth the process of acquiring
access to the University of Twente login APIs. In the worst case scenario the development team
will not be able to acquire access and the system cannot be tested (integration and usability
testing) with the login. To mitigate this we will work in conjunction with the client to acquire
access to those APIs.

Schedule
Because we use the agile methodology with sprints in this project requirements might change
during development. During each sprint a requirement can be altered, added or removed which
means respectively to alter, add and remove tests. At the end of each sprint an integration test

45

will be conducted for the features that were implemented until then. The most important and full
integration tests will be conducted in Sprint 4 of the development phase when the product is
expected to be fully functional. Usability testing will be conducted during Sprint 5 which is the
final sprint so that as developers we have time to polish the design flaws that are identified.

Approvals
Unit testing is a concern of the development team and because of that the approval of a test
coverage of a feature will be given by the whole group. Integration tests will also be approved by
the developers in conjunction with the client. When it comes to usability testing which is
concerned with the end-users the approval will come from the end-users themselves
(depending on how satisfied are they with their experience with the system)

Test results

Unit testing
The unit testing was limited only to services, which do not include more than one entity, which
resulted in a feasible work, as the most complicated parts were an aggregate of services. All of
the Create, Read, Update and Delete were tested, resulting in a working system. Since that was
not a large amount of work, during the unit testing, the quality of queries were also inspected
which was generated by Hibernate and managed to update several bad relationships which
resulted in an increased performance of the system in the end.

Integration testing
During the integration testing, a bug was found. The bug is interfering with making a reservation
when having a more complicated day schedule. The check of whether a booking’s time slot fits
into the schedule was producing wrong results, which thankfully was easy to fix due to the
nature of the system architecture. The rest of the integration tests, such as positioning of
reservable entities and integration of reservations with settings and schedules went as
expected, without introducing any additional work.

Usability testing
The usability tests have provided a really useful feedback in which it helped to discover flaws,
bugs, and system design changes from the system. The details on the methodologies that were
used to conduct the tests and the features that need to be tested could be seen in the “Testing”
section under the “Test plan” subsection. These tests are used to improve the Nielsen’s
Heuristics that were mentioned in the subsection. The participants were asked to do some
number of tasks on the system in order to inspect the system when it is used realistically. The
use cases are referred to after this sentence and the interaction scenario is available in the
“Appendix” section under the “Interaction scenario” subsection.

46

Use cases user side
1. Log into the system with the student’s credentials
2. See available devices/facilities
3. Reserve available devices/facilities
4. Cancel reservations
5. Get confirmation of the reservation
6. Log out of the system

Use cases administrator side
1. Log into the system with the student’s credentials
2. Confirm or deny users’ reservations
3. Cancel users’ reservations
4. View all users’ reservations
5. Add devices and/or facilities
6. Remove devices and/or facilities
7. Set the lounge opening times
8. Change the style of the application layout
9. Log out of the system

The usability testing provided a lot of useful feedback on the system usage. The usability issues
that were identified with the tests are as follow:

Feedback user side
1. Tabs button colours is inconsistent when hovered over

Solution: The tabs button colour is changed to be consistent with the other tabs when
hovered over.

2. Devices needs to be labelled
Solution: A tooltip with device information is added, when you hover over a device.

3. Remove rooms from the map, which will not be used.
Solution: Hide rooms from the map, while preserving the ability to return them back.

Feedback administrator side
1. The button to make new devices/facilities/schedule is not easily recognized and found.

Solution: The button is made to be bigger and have more description to be easily
recognized and found.

2. Scheduling the opening time of the lounge is easy to do but needs to be explained.
Solution: A manual is added in the administrator setting page on how to schedule the
lounge opening time. Since there may exist confusion in other modules as of the
application, a detailed explanation was added for most of the crucial features.

47

3. Undesired changes in all future weeks, if there is an event happening and we change
the schedule.
Solution: The day schedule exception was introduced. It allows you to specify a
schedule only for a specific day, without interrupting the normal working hours of the
lounge for future weeks.

4. Devices needs to have flexible types for future changes (PC/Laptop/Consoles)
Solution: The device types module was created. It allows flexibility on creation of
different types and their respective icons. Examples are PC, Laptop, VR set, Playstation,
Xbox, etc.

48

Future Work
This section explains the prospective development for the current system after the project is
done since it is limited to the defined and explained requirements and scope in the previous
section. The system will already start to be used, but further features of the system could be
added after this project. Examples of the aforementioned features are going to be discussed
more here.

Support of the system
The system would be instantly employed by the client, Esports Team Twente, after the
development phase was completed. As a result, it is necessary to provide the client with the
assistance they require in order for the system to function properly. Due to the first time
deployment of the system into production phase, which would be on a server maintained by the
client, Esports Team Twente, the system would be extremely unreliable. Because the project's
system is a new tool, it is safe to anticipate that Esports Team Twente staff will have a hard time
in its maintenance. As a result, it was decided to support the program with members of the
development team, who would have sufficient knowledge to fix any issues that may arise during
deployment.

Integration with DMS system
Once the system has been deployed in the production environment, which would be on a server
maintained by the client, Esports Team Twente. The system’s behaviour could be inspected
more such that it could be pushed into a stable release environment. When the system has
been working stable in the server, then the plan is to integrate the system with the University of
Twente DMS system. This integration will enable the system to be used by the Unioncard
holders. Thus, the Unioncard holders will be able to use the system by logging into the system
via their DMS account login.

49

Evaluation
This section explains the general evaluation of the project, which includes, the initial planning,
the work responsibilities, team evaluation, initial planned deliverables, and the overall
conclusion of the project’s progression from the start until the finish.

Planning
The planning of the project was delivered in time as the initial planning that we had defined from
the beginning of the project. As defined in the beginning of the project in the Project Proposal
document, the project adheres to the Agile methodology in the form of Scrum. The project
methodology ensures that we have an iteration every two weeks of the project in which we have
to finish the tasks that we set up. Furthermore, the progress of the project and the tasks are
defined in our project board, which is in the same environment as our code repository, GitLab.
The planning is respected during the project which ensured an equally distributed workload
between each iteration, while also ensuring high quality of the deliverables.

The Scrum framework is used to plan, design, build and test the application. Our project plan is
divided into five sprints. Each sprint would last for two weeks, except for the first sprint until the
fifth sprint which would only last for a week and a half due to the kick-in and the easter holiday
in University scheduling respectively. Moreover, there is a one week gap from the first and the
second sprint as this is due to the spring break holiday in the University scheduling. The details
of the plan are as follows.

Sprint 1 - Requirement analysis / Design (9th - 18th February 2022)
● Setup contact with the Product owner.
● Setup contact with the supervisor.
● Finish the project proposal.
● Start with the Requirement Analysis and Specification.
● Contact the University of Twente system manager.
● Set up a GitLab repository.
● Start design of UML diagrams.
● Finish mockup.
● Prepare for the peer review meeting, talking about the project’s proposal and planning.

Sprint 2 - Design / development (28th February - 11th March 2022)
● Implement the first increment of the system, where the system must have a ready and

functional layout of the user interface, connected with a REST API server, as well as
configurable device and facility pages in which an admin can create, edit and delete
entities.

● Extend UML diagrams with the idea of the system final version.
● Start the first version of the design report.
● Start and complete the test plan for the system.

50

● Complete the Requirements Analysis and Specification.
● Prepare for the peer review meeting, talking about the project’s requirements

specification and test plan.

Sprint 3 - Development (14th - 25th March 2022)
● Implement the second increment of the system, where the system must have an

interactive map of the architectural plan of the lounge, in which the admin can manually
set up devices and facilities and have all the settings needed for making a reservation to
be functional and properly working.

● Complete first version of the design report.
● Continue with the development and focusing on adding new features.
● Continuously testing the system and eliminating all the system errors.
● Prepare for the peer review meeting, talking about the project’s first version of the design

report and the system.

Sprint 4 - Development (28th March - 8th April 2022)
● Implement the third increment of the system, where the system must have a reservation

making tab, in which a user can make a reservation for a specific seat and/or facility in
the ETT lounge. In this system increment, we must have a login integration with canvas
and make it possible for University of Twente students to use their credentials.

● Start with the poster.
● Start with the presentation slides.
● Continuously testing the system and eliminating all the system errors.
● Continuously working for the design report.

Sprint 5 - Closure (11th - 20th April 2022)
● Final product demonstration, presentation, and poster
● Finalise the testing for the system, eliminating all errors and bugs.
● Finalise the Design report.
● Finalise the design document, providing the system manual and documentation.
● Complete presentation slides.
● Complete the poster.

Responsibilities
The project was well-divided into various tasks because the team was made up of people with
diverse interests and skills. The task assignments were primarily assigned to team members
based on their interests since we believe that if we work on what we like, we will have really
good results. Furthermore, because of the wide range of interests and experience, we delegate
different responsibilities as follow:

● Boris Belchev
Front-end developer, Requirement specification, Poster design and presentation slides.

51

● Irvine Verio
Project manager, Communication manager with the client, Requirement analysis,
Front-end developer, Poster design and presentation slides.

● Ivan Trendafilov
Database designer, Back-end developer, System development, Head of testing.

● Pavel Hristov
Database designer, Head of back-end developer, System development, System testing.

● Viktor Tonchev
Head of system development, System testing, Back-end developer, User’s manual and
documentation editor.

It's worth noting that the project deliverables were written as a collaborative effort including all
members of the team. The group has also been in charge of personal communication with the
client, Esport Team Twente, and the University of Twente supervisor (Dr. Vadim Zaytsev).

Team evaluation
The team has been working fully online since the beginning of the project. The only time that we
met physically was at the start and the end of the project. However, this does not affect the
working chemistry of the team itself. We work mostly individually or in a group of two if they
have similar tasks since this makes it easier to schedule meetings and to work together.
Besides, we always meet every week in order to discuss the progress and plan on the work for
the next weeks. The responsibilities that were mentioned previously were identified naturally.
Moreover, all of the team members have done a fair share of the whole project work. All in all,
the team working chemistry was really good and there were not really any problems or
arguments in working together as a team.

Deliverables
The project deliverables that were set in the beginning of the project are also reflected here
whether the deliverable is satisfied or not. Following are the system requirements along with the
progress of the deliverable if it was achieved successfully or not.

Functional requirements
1. ✔ The reservation system must be able to let students log in and out with their UT

account or DMS-account (Unioncard).
2. ✔ The reservation system must be able to reserve devices and/or facilities.
3. ✔ The reservation system must be able to let students cancel their reservation.
4. ✔ The reservation system must be able to inform students about confirmation messages

or email.
5. ✔ The reservation system must be able to let the Esports Lounge staff a way to log in

and out as admin.

52

6. ✔ The reservation system must be able to give the Esports Lounge staff the option to
cancel a reservation.

7. ✔ The reservation system must be able to let the Esports Lounge staff easily view all
made reservations in an easily readable overview/timetable.

8. ✔ The reservation system must be able to let the Esports Lounge staff confirm devices
and/or facilities requests.

9. ✔ The reservation system must be able to let the Esports Lounge staff deny devices
and/or facilities requests.

10.✔ The reservation system must be able to let the Esports Lounge staff the possibility to
set the times that the lounge is open and reservations should be possible.

11. ✔ The reservation system must be able to add devices and/or facilities for students to
reserve.

12.✔ The reservation system must be able to remove devices and/or facilities for students
to reserve.

13. X The reservation system should be able register full facilities reservations within the
DMS system of the University through an API connection.

14.✔ The reservation system should have an interactive map with all the devices and
facilities on it representing the real lounge.

15. X The reservation system could change the style of the application layout.

Non-functional requirements
16.✔ The system should handle the users' and/or administrators' login within 30 seconds
17.✔ The system should use the Esport Lounge Twente style guide for the frontend.
18.✔The system should send confirmation email/message for a reservation within 30

seconds.
19.✔ The system should be available 24/7 except in case of maintenance.
20.✔The system should be able to handle at least 5000 requests concurrently, either by

users and/or administrators, at the same time without degradation of performance
21.✔In case of a breakdown, the system should roll back all of the partially made

reservations.

Some of the deliverables that were not able to be delivered, such as deliverables number 13
and 15, were caused by several reasons. We were not able to deliver number 13 because our
client had envisioned a different way for the deliverables. There were many changes that
happened during the development. In the beginning, he wanted this deliverable to be realised,
but later on the client wanted an entity from the University of Twente that is different from the
DMS system, in which would integrate the reservation system in it. In the end, the client told us
that the entity did not want to invest money in the integration of a new project. Thus, the client
mentioned that there are different plans for the future on how they would integrate the
reservation system to the DMS system in which it is out of scope of the project.

Meanwhile, deliverable 15 was not implemented mainly because of time bound issues and its
importance. From the beginning, it was clearly stated that this deliverable would be
implemented only if there is enough time in the project and that if it was important in the future.

53

However, there was a different solution to this deliverable. It was agreed upon with the
developer team and the client, that the team would provide documentation in the code from
where the ETT staff could change the application layout.

In addition, one of the final product figures is also showcased in the figure below such that it
could be seen what the product looks like. The other figures could be seen in the “Appendix”
section under the “Final Products” subsection.

Figure 12: User interface home page to make bookings for devices and/or facilities.

Conclusion
Due to the project methodology, this ensured that the deliverables were completed and
delivered on time. The team has been working fully online since the beginning of the project.
However, this does not affect the working chemistry of the team itself as we always meet every
week in order to discuss the progress and plan on the work for the next weeks.

The aim of the project was to deliver a system that prioritises on its usability, scalability, and the
ease of adding new entities to the system with regard to the newly built Esports Team Twente
Lounge. Moreover, the aim of the project was also to deliver a completely working and error-free
system which can be hosted after the project has ended since the future plans is to deploy the
system on servers hosted at the Esports Team Twente servers and might even be integrated
into DMS system (as mentioned in the previous section “Future Work”).

54

As stated previously, the project resulted in a working system that meets the requirements and
expectations of the client. After the system has been delivered, it will be taken into operation by
the organisation, Esports Team Twente, fully into deployment.

To summarise, there were two general goals of this project. The first was to provide a working
system that met the requirements and expectations of our client and the second goal was to
obtain a better understanding of the development process and all of its iterations. The first goal
was achieved without any problems and the final result of the product can be seen in the
“Appendix” section under the subsection of “Final Product”. Because of the duration of the
development, this project also provided insight into the challenges that may arise in terms of
project work and also teamwork. In addition to that, the developer team has gained a lot of new
knowledge in communication with clients and conducting interviews for feedback and
improvement of the final product. Lastly, we have gained a lot of new knowledge in software
architecture and development, measuring time frames for implementation, and finishing the
project with a satisfied client. Therefore, the second goal has also been achieved. This means
that we achieved the goals of this project in the end.

55

References
Abrahamsson, P. (2002). Agile Software Development Methods: Review and Analysis.
Technical Research Centre of Finland.

Adi, P. (2015). Scrum method implementation in a software development project
management. International Journal of Advanced Computer Science and Applications, 6(9).
https://doi.org/10.14569/ijacsa.2015.060927

Alexander, Ian. (2004). A Better Fit - Characterising the Stakeholders. 215-223.

Baker, C. (2018, June 25). Meet Dennis 'thresh' fong, the original pro gamer. Rolling
Stone. Retrieved March 22, 2022, from
https://www.rollingstone.com/culture/culture-news/meet-dennis-thresh-fong-the-original-pr
o-gamer-103208/

Cohen, D. S. (2019, March 14). Cathode-Ray Tube Amusement Device: The World's first
video game? Lifewire. Retrieved March 22, 2022, from
https://www.lifewire.com/cathode-ray-tube-amusement-device-729579

Craddock, A. (2014). The Dsdm Agile Project Framework. DSDM Consortium.

Dingsøyr, T., Nerur, S., Balijepally, V. G., & Moe, N. B. (2012). A decade of agile
methodologies: Towards Explaining Agile Software Development. Journal of Systems and
Software, 85(6), 1213–1221. https://doi.org/10.1016/j.jss.2012.02.033

Esports Team Twente. (2021). Year One in Review. Esports Team Twente. Retrieved April
19, 2022, from https://esportsteamtwente.nl/year-one-in-review/

Estublier, J. (2000). Software configuration management. Proceedings of the Conference
on The Future of Software Engineering - ICSE '00, 279–289.
https://doi.org/10.1145/336512.336576

Flowers, J. G. (2008). Improving the capstone project experience. Proceedings of the 46th
Annual Southeast Regional Conference on XX - ACM-SE 46, 237–242.
https://doi.org/10.1145/1593105.1593167

Good, O. (2013, June 19). Today is the 40th anniversary of the world's first known video
gaming tournament. Kotaku. Retrieved March 22, 2022, from
https://kotaku.com/today-is-the-40th-anniversary-of-the-worlds-first-known-5953371

"IEEE Standard for Software Test Documentation," in IEEE Std 829-1998 , vol., no.,
pp.1-64, 16 Dec. 1998, doi: 10.1109/IEEESTD.1998.88820.

Mannion, M., & Keepence, B. (1995). Smart requirements. ACM SIGSOFT Software
Engineering Notes, 20(2), 42–47. https://doi.org/10.1145/224155.224157

56

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of User Interfaces. Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems Empowering People -
CHI '90, 249–256. https://doi.org/10.1145/97243.97281

Ohst, D., Welle, M., & Kelter, U. (2003). Differences between versions of UML diagrams.
Proceedings of the 9th European Software Engineering Conference Held Jointly with 10th
ACM SIGSOFT International Symposium on Foundations of Software Engineering -
ESEC/FSE '03, 227–236. https://doi.org/10.1145/940071.940102

Prieto-Díaz, R. (1990). Domain analysis. ACM SIGSOFT Software Engineering Notes,
15(2), 47–54. https://doi.org/10.1145/382296.382703

Sharp, H., Rogers, Y., & Preece, J. (2009). Interaction design: Beyond human-computer
interaction. John Wiley.

57

Appendix

Mockups
This section presents the system mockups, specifically the user interface of the system from the
user’s and administrator’s perspectives, in which we presented to the client. These mockups
define visually the user interface’s characteristics and behaviour and the mockups description
define verbally the user interface’s description. The user interface mockup and description
provide a visual context for understanding the system’s other requirements (Flowers, Improving
the capstone project experience 2008).

Figure 13: Mockup of the main page in the client view.

58

Figure 14: Mockup of the interactive map of the lounge, when making a reservation.

Figure 15: Mockup of device/facility creation in the admin view.

59

Figure 16: Mockup of the schedule creation in the admin view.

Figure 17: Mockup of week schedule creation in the admin view.

60

Figure 18: Mockup of day schedule creation in the admin view.

Figure 19: Mockup of the table, displaying all bookings in the lounge.

61

Usability testing records

Interaction scenario

User side
beep A message has been received from your friend that he wants to hangout with you to go
to the Esports Team Twente Lounge in Bastille. He asked if you could reserve the device first
before he did so as he is away from his computer. To do this, you must first log in to the system
with your account [Log in to the system as a user]. The reservation for the device is to take
place on April 4 of this year, it starts at 11:00 and will end at 12:00 [See available devices]
[Reserve available devices] [Get confirmation of the reservation].

After getting the confirmation of your reservation, you check your calendar and realise that you
have a meeting at the specified time and would like to cancel the reservation. Then, you go to
the reservation system and cancel the reservation. [Cancel reservations]

After discussing with your friend, you have decided to reserve a facility from 12:00 until 13:00
[See available facilities] [Reserve available facilities] [Get confirmation of the reservation].

The device is reserved and you can now log out of the system [Log out of the system as a user].

Admin side
The day has just started and you went to your shift at the Esports Team Twente lounge. You log
in to the system as an administrator [Log in to the system as an administrator] to check for
reservations for the lounge [View all users’ reservations]. You noticed that a user has reserved
an available device. Then, you want to confirm the reservation [Confirm users’ reservation].

Then, another user wants to reserve a device that is currently not available. You realise this and
would like to deny the reservation [Deny users’ reservation].

After that, there are no more reservation requests. You then go to look around the lounge and
see that there is a computer, device number 1, that cannot be used anymore. So you want to
replace this with another computer, device number 10, in the same spot. You then do the
replacement and update it in the system [Remove device] [Add device].

Continuing to walk around the lounge, you notice that there is a room, facility number 3, that has
a water leakage which would not be able to be used. You want to replace the room with another
room that could be used by the users, facility number 8. Thus, you update this in the system
[Remove facility] [Add facility].

62

You go back to your seat and you notice that another user is trying to reserve an available
facility. Then, you want to confirm the reservation [Confirm users’ reservation]. Then, the same
user wants to reserve another facility that is currently not available. You realise this and would
like to deny the reservation [Deny users’ reservation].

You just got a message from a colleague that the whole lounge is going to be reserved for
tomorrow. Therefore, you want to cancel the users’ reservations because it is going to be used
the whole day tomorrow [Cancel users’ reservations]

Finally, when your shift for the day almost ends, you want to change the lounge opening for next
week since there will be a Blushell tournament event next week. You want to set the lounge
opening only from 16:00 - 22:00 [Set the lounge opening times].

Your tasks are done for the day and you can now log out of the system [Log out of the system
as an administrator].

Setup
The participants were asked to join a Google Meet video chat in which they are asked to access
the test website environment. The other members are also observing through Google Meet and
writing down the answers.

Procedure
1. Users will be asked to join the meeting via the Google Meet video chat platform.
2. A short introduction on the purpose of the system given by the experiment leader.
3. Users will be asked to go to the website test environment that is given through the video

chat message and follow the interaction scenario specified above.
4. After the user has done the series of tasks from the interaction scenario, a number of

questions (could be seen below) will be asked to the user.
5. The answers are going to be noted down and the result is going to be present as well

below.

Questions
1. What was your first impression of the system?
2. What do you think about the layout?
3. What do you think about the colour scheme?
4. Do you think the User Interface works intuitively?
5. Do you know the meaning of the colours on the interactive map?
6. Do you think it’s better to directly submit a changed setting or have a confirm button to

submit all the changed settings at once?
7. Any current features you would say are unnecessary?
8. Any features you would add?
9. Anything else you would change to the application?

63

10. Are there any tips for the future system?

Final Product

Client interface

Figure 20: Overview of a user bookings page.

64

Figure 21: Device booking page for users to select what device they want to book for which date
and for how long.

Figure 22: Facility booking page for users to select what facility they want to book for which date
and for how long.

65

Administrator Interface

Figure 23: Administrator interface home page to see all available bookings and filters for either
device booking, facility booking, status of the booking, or time period as well as a search to find

specific bookings.

Figure 24: The pending bookings page similar to the all bookings page but shows only the
bookings that need to be accepted/denied.

66

Figure 25: General settings page of the lounge reservation system.

Figure 26: Week schedule overview page where you can create/edit/delete week schedules.

67

Figure 27: Create week schedule page.

Figure 28: Day schedule overview where you can create/edit/delete day schedules.

Figure 29: Create day schedule page.

68

Figure 30: Day schedule exception page where you can create/edit/delete day schedule
exceptions.

Figure 31: Day schedule exception creation page.

Figure 32: All device overview page where you can create/edit/delete devices.

Figure 33: Create device page.

69

Figure 34: Overview of all device types page where you can create/edit/delete device types.

Figure 35: Create device type page.

Figure 36: Interactive map page where you can put all the devices wherever you want.

70

Figure 37: Overview of all facilities page where you can create/edit/delete facilities.

Figure 38: Create facility page.

Figure 39: Overview of all admins page where you can create/edit/delete admins.

71

Figure 40: Create admin page where you create admins.

Figure 41: Manual page for admins with instructions on how to use different parts
of the system.

72

